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2.1 Linear algebra

This book is written as much to disturb and annoy as to instruct.
– The first line of About Vectors, by Banesh Hoffmann.

Life is complex – it has both real and imaginary parts.
– Anonymous

Linear algebra is the study of vector spaces and of linear operations on those vector

spaces. A good understanding of quantum mechanics is based upon a solid grasp of

elementary linear algebra. In this section we review some basic concepts from linear

algebra, and describe the standard notations which are used for these concepts in the

study of quantum mechanics. These notations are summarized in Figure 2.1 on page 62,

with the quantum notation in the left column, and the linear-algebraic description in the

right column. You may like to glance at the table, and see how many of the concepts in

the right column you recognize.

In our opinion the chief obstacle to assimilation of the postulates of quantum mechan-

ics is not the postulates themselves, but rather the large body of linear algebraic notions

required to understand them. Coupled with the unusual Dirac notation adopted by physi-

cists for quantum mechanics, it can appear (falsely) quite fearsome. For these reasons,

we advise the reader not familiar with quantum mechanics to quickly read through the

material which follows, pausing mainly to concentrate on understanding the absolute ba-

sics of the notation being used. Then proceed to a careful study of the main topic of the

chapter – the postulates of quantum mechanics – returning to study the necessary linear

algebraic notions and notations in more depth, as required.

The basic objects of linear algebra are vector spaces. The vector space of most interest
to us is Cn, the space of all n-tuples of complex numbers, (z1, . . . , zn). The elements of

a vector space are called vectors, and we will sometimes use the column matrix notation
⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ (2.1)

to indicate a vector. There is an addition operation defined which takes pairs of vectors
to other vectors. In Cn the addition operation for vectors is defined by

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ +

⎡
⎢⎣

z′
1

...

z′
n

⎤
⎥⎦ ≡

⎡
⎢⎣

z1 + z′
1

...

zn + z′
n

⎤
⎥⎦ , (2.2)

where the addition operations on the right are just ordinary additions of complex numbers.

Furthermore, in a vector space there is a multiplication by a scalar operation. In Cn

this operation is defined by

z

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ ≡

⎡
⎢⎣

zz1
...

zzn

⎤
⎥⎦ , (2.3)
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where z is a scalar, that is, a complex number, and the multiplications on the right
are ordinary multiplication of complex numbers. Physicists sometimes refer to complex

numbers as c-numbers.
Quantum mechanics is our main motivation for studying linear algebra, so we will use

the standard notation of quantum mechanics for linear algebraic concepts. The standard

quantum mechanical notation for a vector in a vector space is the following:

|ψ〉. (2.4)

ψ is a label for the vector (any label is valid, although we prefer to use simple labels like
ψ and ϕ). The |·〉 notation is used to indicate that the object is a vector. The entire object
|ψ〉 is sometimes called a ket, although we won’t use that terminology often.
A vector space also contains a special zero vector, which we denote by 0. It satisfies

the property that for any other vector |v〉, |v〉 + 0 = |v〉. Note that we do not use the
ket notation for the zero vector – it is the only exception we shall make. The reason

for making the exception is because it is conventional to use the ‘obvious’ notation for

the zero vector, |0〉, to mean something else entirely. The scalar multiplication operation
is such that z0 = 0 for any complex number z. For convenience, we use the notation
(z1, . . . , zn) to denote a column matrix with entries z1, . . . , zn. In Cn the zero element

is (0, 0, . . . , 0). A vector subspace of a vector space V is a subset W of V such that W is

also a vector space, that is, W must be closed under scalar multiplication and addition.

Notation Description

z∗ Complex conjugate of the complex number z.
(1 + i)∗ = 1− i

|ψ〉 Vector. Also known as a ket.
〈ψ| Vector dual to |ψ〉. Also known as a bra.
〈ϕ|ψ〉 Inner product between the vectors |ϕ〉 and |ψ〉.
|ϕ〉 ⊗ |ψ〉 Tensor product of |ϕ〉 and |ψ〉.
|ϕ〉|ψ〉 Abbreviated notation for tensor product of |ϕ〉 and |ψ〉.

A∗ Complex conjugate of the A matrix.

AT Transpose of the A matrix.

A† Hermitian conjugate or adjoint of the A matrix, A† = (AT )∗.[
a b
c d

]†
=

[
a∗ c∗

b∗ d∗

]
.

〈ϕ|A|ψ〉 Inner product between |ϕ〉 and A|ψ〉.
Equivalently, inner product between A†|ϕ〉 and |ψ〉.

Figure 2.1. Summary of some standard quantum mechanical notation for notions from linear algebra. This style of

notation is known as the Dirac notation.

2.1.1 Bases and linear independence
A spanning set for a vector space is a set of vectors |v1〉, . . . , |vn〉 such that any vector
|v〉 in the vector space can be written as a linear combination |v〉 =∑

i ai|vi〉 of vectors
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in that set. For example, a spanning set for the vector space C2 is the set

|v1〉 ≡
[
1

0

]
; |v2〉 ≡

[
0

1

]
, (2.5)

since any vector

|v〉 =
[

a1
a2

]
(2.6)

in C2 can be written as a linear combination |v〉 = a1|v1〉+ a2|v2〉 of the vectors |v1〉 and
|v2〉. We say that the vectors |v1〉 and |v2〉 span the vector space C2.
Generally, a vector space may have many different spanning sets. A second spanning

set for the vector space C2 is the set

|v1〉 ≡ 1√
2

[
1

1

]
; |v2〉 ≡ 1√

2

[
1

−1
]
, (2.7)

since an arbitrary vector |v〉 = (a1, a2) can be written as a linear combination of |v1〉 and
|v2〉,

|v〉 = a1 + a2√
2
|v1〉 + a1 − a2√

2
|v2〉. (2.8)

A set of non-zero vectors |v1〉, . . . , |vn〉 are linearly dependent if there exists a set of
complex numbers a1, . . . , an with ai 	= 0 for at least one value of i, such that

a1|v1〉 + a2|v2〉 + · · · + an|vn〉 = 0. (2.9)

A set of vectors is linearly independent if it is not linearly dependent. It can be shown
that any two sets of linearly independent vectors which span a vector space V contain the

same number of elements. We call such a set a basis for V . Furthermore, such a basis
set always exists. The number of elements in the basis is defined to be the dimension of
V . In this book we will only be interested in finite dimensional vector spaces. There are
many interesting and often difficult questions associated with infinite dimensional vector

spaces. We won’t need to worry about these questions.

Exercise 2.1: (Linear dependence: example) Show that (1,−1), (1, 2) and (2, 1)
are linearly dependent.

2.1.2 Linear operators and matrices
A linear operator between vector spaces V and W is defined to be any function A :

V →W which is linear in its inputs,

A

(∑
i

ai|vi〉
)
=

∑
i

aiA
(|vi〉

)
. (2.10)

Usually we just write A|v〉 to denote A(|v〉). When we say that a linear operator A is

defined on a vector space, V , we mean that A is a linear operator from V to V . An
important linear operator on any vector space V is the identity operator, IV , defined by

the equation IV |v〉 ≡ |v〉 for all vectors |v〉. Where no chance of confusion arises we drop
the subscript V and just write I to denote the identity operator. Another important linear
operator is the zero operator, which we denote 0. The zero operator maps all vectors to
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the zero vector, 0|v〉 ≡ 0. It is clear from (2.10) that once the action of a linear operator
A on a basis is specified, the action of A is completely determined on all inputs.

Suppose V, W , and X are vector spaces, and A : V → W and B : W → X are

linear operators. Then we use the notation BA to denote the composition of B with A,
defined by (BA)(|v〉) ≡ B(A(|v〉)). Once again, we write BA|v〉 as an abbreviation for
(BA)(|v〉).
The most convenient way to understand linear operators is in terms of their matrix

representations. In fact, the linear operator and matrix viewpoints turn out to be com-
pletely equivalent. The matrix viewpoint may be more familiar to you, however. To see

the connection, it helps to first understand that anm by n complex matrix A with entries
Aij is in fact a linear operator sending vectors in the vector space Cn to the vector space

Cm, under matrix multiplication of the matrix A by a vector in Cn. More precisely, the

claim that the matrix A is a linear operator just means that

A

(∑
i

ai|vi〉
)
=

∑
i

aiA|vi〉 (2.11)

is true as an equation where the operation is matrix multiplication ofA by column vectors.
Clearly, this is true!

We’ve seen that matrices can be regarded as linear operators. Can linear operators

be given a matrix representation? In fact they can, as we now explain. This equivalence

between the two viewpoints justifies our interchanging terms from matrix theory and

operator theory throughout the book. Suppose A : V → W is a linear operator between

vector spaces V and W . Suppose |v1〉, . . . , |vm〉 is a basis for V and |w1〉, . . . , |wn〉 is a
basis for W . Then for each j in the range 1, . . . , m, there exist complex numbers A1j

through Anj such that

A|vj〉 =
∑

i

Aij |wi〉. (2.12)

The matrix whose entries are the values Aij is said to form amatrix representation of the
operator A. This matrix representation of A is completely equivalent to the operator A,
and we will use the matrix representation and abstract operator viewpoints interchange-

ably. Note that to make the connection between matrices and linear operators we must

specify a set of input and output basis states for the input and output vector spaces of

the linear operator.

Exercise 2.2: (Matrix representations: example) Suppose V is a vector space

with basis vectors |0〉 and |1〉, and A is a linear operator from V to V such that

A|0〉 = |1〉 and A|1〉 = |0〉. Give a matrix representation for A, with respect to
the input basis |0〉, |1〉, and the output basis |0〉, |1〉. Find input and output bases
which give rise to a different matrix representation of A.

Exercise 2.3: (Matrix representation for operator products) Suppose A is a

linear operator from vector space V to vector space W , and B is a linear

operator from vector space W to vector space X . Let |vi〉, |wj〉, and |xk〉 be
bases for the vector spaces V, W , and X, respectively. Show that the matrix
representation for the linear transformation BA is the matrix product of the

matrix representations for B and A, with respect to the appropriate bases.
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Exercise 2.4: (Matrix representation for identity) Show that the identity operator

on a vector space V has a matrix representation which is one along the diagonal

and zero everywhere else, if the matrix representation is taken with respect to the

same input and output bases. This matrix is known as the identity matrix.

2.1.3 The Pauli matrices
Four extremely useful matrices which we shall often have occasion to use are the Pauli
matrices. These are 2 by 2 matrices, which go by a variety of notations. The matrices,
and their corresponding notations, are depicted in Figure 2.2. The Pauli matrices are so

useful in the study of quantum computation and quantum information that we encourage

you to memorize them by working through in detail the many examples and exercises

based upon them in subsequent sections.

σ0 ≡ I ≡
[
1 0

0 1

]

σ2 ≡ σy ≡ Y ≡
[
0 −i
i 0

]
σ1 ≡ σx ≡ X ≡

[
0 1

1 0

]

σ3 ≡ σz ≡ Z ≡
[
1 0

0 −1
]

Figure 2.2. The Pauli matrices. Sometimes I is omitted from the list with just X, Y and Z known as the Pauli

matrices.

2.1.4 Inner products
An inner product is a function which takes as input two vectors |v〉 and |w〉 from a vector
space and produces a complex number as output. For the time being, it will be convenient

to write the inner product of |v〉 and |w〉 as (|v〉, |w〉). This is not the standard quantum
mechanical notation; for pedagogical clarity the (·, ·) notation will be useful occasionally in
this chapter. The standard quantum mechanical notation for the inner product (|v〉, |w〉)
is 〈v|w〉, where |v〉 and |w〉 are vectors in the inner product space, and the notation 〈v|
is used for the dual vector to the vector |v〉; the dual is a linear operator from the inner
product space V to the complex numbers C, defined by 〈v|(|w〉) ≡ 〈v|w〉 ≡ (|v〉, |w〉).
We will see shortly that the matrix representation of dual vectors is just a row vector.

A function (·, ·) from V × V to C is an inner product if it satisfies the requirements
that:

(1) (·, ·) is linear in the second argument,(
|v〉,

∑
i

λi|wi〉
)
=

∑
i

λi

(|v〉, |wi〉
)
. (2.13)

(2) (|v〉, |w〉) = (|w〉, |v〉)∗.
(3) (|v〉, |v〉) ≥ 0 with equality if and only if |v〉 = 0.
For example, Cn has an inner product defined by

((y1, . . . , yn), (z1, . . . , zn)) ≡
∑

i

y∗
i zi =

[
y∗
1 . . . y∗

n

]
⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ . (2.14)
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We call a vector space equipped with an inner product an inner product space.

Exercise 2.5: Verify that (·, ·) just defined is an inner product on Cn.

Exercise 2.6: Show that any inner product (·, ·) is conjugate-linear in the first
argument, (∑

i

λi|wi〉, |v〉
)
=

∑
i

λ∗
i (|wi〉, |v〉). (2.15)

Discussions of quantum mechanics often refer to Hilbert space. In the finite dimen-
sional complex vector spaces that come up in quantum computation and quantum infor-

mation, a Hilbert space is exactly the same thing as an inner product space. From now
on we use the two terms interchangeably, preferring the term Hilbert space. In infinite

dimensions Hilbert spaces satisfy additional technical restrictions above and beyond inner

product spaces, which we will not need to worry about.

Vectors |w〉 and |v〉 are orthogonal if their inner product is zero. For example, |w〉 ≡
(1, 0) and |v〉 ≡ (0, 1) are orthogonal with respect to the inner product defined by (2.14).
We define the norm of a vector |v〉 by

‖|v〉‖ ≡
√
〈v|v〉 . (2.16)

A unit vector is a vector |v〉 such that ‖|v〉‖ = 1. We also say that |v〉 is normalized if
‖|v〉‖ = 1. It is convenient to talk of normalizing a vector by dividing by its norm; thus
|v〉/‖|v〉‖ is the normalized form of |v〉, for any non-zero vector |v〉. A set |i〉 of vectors
with index i is orthonormal if each vector is a unit vector, and distinct vectors in the set
are orthogonal, that is, 〈i|j〉 = δij , where i and j are both chosen from the index set.

Exercise 2.7: Verify that |w〉 ≡ (1, 1) and |v〉 ≡ (1,−1) are orthogonal. What are the
normalized forms of these vectors?

Suppose |w1〉, . . . , |wd〉 is a basis set for some vector space V with an inner product.

There is a useful method, theGram–Schmidt procedure, which can be used to produce an
orthonormal basis set |v1〉, . . . , |vd〉 for the vector space V . Define |v1〉 ≡ |w1〉/‖ |w1〉 ‖,
and for 1 ≤ k ≤ d− 1 define |vk+1〉 inductively by

|vk+1〉 ≡ |wk+1〉 −
∑k

i=1〈vi|wk+1〉|vi〉
‖|wk+1〉 −

∑k
i=1〈vi|wk+1〉|vi〉‖

. (2.17)

It is not difficult to verify that the vectors |v1〉, . . . , |vd〉 form an orthonormal set which
is also a basis for V . Thus, any finite dimensional vector space of dimension d has an
orthonormal basis, |v1〉, . . . , |vd〉.

Exercise 2.8: Prove that the Gram–Schmidt procedure produces an orthonormal basis
for V .

From now on, when we speak of a matrix representation for a linear operator, we mean

a matrix representation with respect to orthonormal input and output bases. We also use

the convention that if the input and output spaces for a linear operator are the same, then

the input and output bases are the same, unless noted otherwise.
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With these conventions, the inner product on a Hilbert space can be given a convenient

matrix representation. Let |w〉 = ∑
i wi|i〉 and |v〉 =

∑
j vj |j〉 be representations of

vectors |w〉 and |v〉 with respect to some orthonormal basis |i〉. Then, since 〈i|j〉 = δij ,

〈v|w〉 =
⎛
⎝∑

i

vi|i〉,
∑

j

wj |j〉
⎞
⎠ =

∑
ij

v∗
i wjδij =

∑
i

v∗
i wi (2.18)

=
[
v∗
1 . . . v∗

n

]
⎡
⎢⎣

w1

...

wn

⎤
⎥⎦ . (2.19)

That is, the inner product of two vectors is equal to the vector inner product between

two matrix representations of those vectors, provided the representations are written

with respect to the same orthonormal basis. We also see that the dual vector 〈v| has a
nice interpretation as the row vector whose components are complex conjugates of the

corresponding components of the column vector representation of |v〉.
There is a useful way of representing linear operators which makes use of the inner

product, known as the outer product representation. Suppose |v〉 is a vector in an inner
product space V , and |w〉 is a vector in an inner product space W . Define |w〉〈v| to be
the linear operator from V to W whose action is defined by(|w〉〈v|) (|v′〉) ≡ |w〉 〈v|v′〉 = 〈v|v′〉|w〉. (2.20)

This equation fits beautifully into our notational conventions, according to which the

expression |w〉〈v|v′〉 could potentially have one of two meanings: we will use it to denote
the result when the operator |w〉〈v| acts on |v′〉, and it has an existing interpretation as
the result of multiplying |w〉 by the complex number 〈v|v′〉. Our definitions are chosen
so that these two potential meanings coincide. Indeed, we define the former in terms of
the latter!

We can take linear combinations of outer product operators |w〉〈v| in the obvious way.
By definition

∑
i ai|wi〉〈vi| is the linear operator which, when acting on |v′〉, produces∑

i ai|wi〉〈vi|v′〉 as output.
The usefulness of the outer product notation can be discerned from an important result

known as the completeness relation for orthonormal vectors. Let |i〉 be any orthonormal
basis for the vector space V , so an arbitrary vector |v〉 can be written |v〉 =∑

i vi|i〉 for
some set of complex numbers vi. Note that 〈i|v〉 = vi and therefore(∑

i

|i〉〈i|
)
|v〉 =

∑
i

|i〉〈i|v〉 =
∑

i

vi|i〉 = |v〉. (2.21)

Since the last equation is true for all |v〉 it follows that∑
i

|i〉〈i| = I. (2.22)

This equation is known as the completeness relation. One application of the completeness
relation is to give a means for representing any operator in the outer product notation.

Suppose A : V → W is a linear operator, |vi〉 is an orthonormal basis for V , and |wj〉
an orthonormal basis for W . Using the completeness relation twice we obtain

A = IW AIV (2.23)
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=
∑
ij

|wj〉〈wj |A|vi〉〈vi| (2.24)

=
∑
ij

〈wj |A|vi〉|wj〉〈vi|, (2.25)

which is the outer product representation for A. We also see from this equation that A
has matrix element 〈wj |A|vi〉 in the ith column and jth row, with respect to the input
basis |vi〉 and output basis |wj〉.
A second application illustrating the usefulness of the completeness relation is the

Cauchy–Schwarz inequality. This important result is discussed in Box 2.1, on this
page.

Exercise 2.9: (Pauli operators and the outer product) The Pauli matrices

(Figure 2.2 on page 65) can be considered as operators with respect to an

orthonormal basis |0〉, |1〉 for a two-dimensional Hilbert space. Express each of
the Pauli operators in the outer product notation.

Exercise 2.10: Suppose |vi〉 is an orthonormal basis for an inner product space V .
What is the matrix representation for the operator |vj〉〈vk|, with respect to the
|vi〉 basis?

Box 2.1: The Cauchy-Schwarz inequality

The Cauchy–Schwarz inequality is an important geometric fact about Hilbert
spaces. It states that for any two vectors |v〉 and |w〉, |〈v|w〉|2 ≤ 〈v|v〉〈w|w〉. To
see this, use the Gram–Schmidt procedure to construct an orthonormal basis |i〉
for the vector space such that the first member of the basis |i〉 is |w〉/√〈w|w〉.
Using the completeness relation

∑
i |i〉〈i| = I, and dropping some non-negative

terms gives

〈v|v〉〈w|w〉 =
∑

i

〈v|i〉〈i|v〉〈w|w〉 (2.26)

≥ 〈v|w〉〈w|v〉〈w|w〉 〈w|w〉 (2.27)

= 〈v|w〉〈w|v〉 = |〈v|w〉|2, (2.28)

as required. A little thought shows that equality occurs if and only if |v〉 and |w〉
are linearly related, |v〉 = z|w〉 or |w〉 = z|v〉, for some scalar z.

2.1.5 Eigenvectors and eigenvalues
An eigenvector of a linear operator A on a vector space is a non-zero vector |v〉 such that
A|v〉 = v|v〉, where v is a complex number known as the eigenvalue of A corresponding

to |v〉. It will often be convenient to use the notation v both as a label for the eigenvector,
and to represent the eigenvalue. We assume that you are familiar with the elementary

properties of eigenvalues and eigenvectors – in particular, how to find them, via the

characteristic equation. The characteristic function is defined to be c(λ) ≡ det |A−λI|,
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where det is the determinant function for matrices; it can be shown that the characteristic
function depends only upon the operator A, and not on the specific matrix representation
used for A. The solutions of the characteristic equation c(λ) = 0 are the eigenvalues
of the operator A. By the fundamental theorem of algebra, every polynomial has at least
one complex root, so every operator A has at least one eigenvalue, and a corresponding

eigenvector. The eigenspace corresponding to an eigenvalue v is the set of vectors which
have eigenvalue v. It is a vector subspace of the vector space on which A acts.

A diagonal representation for an operator A on a vector space V is a representation

A =
∑

i λi|i〉〈i|, where the vectors |i〉 form an orthonormal set of eigenvectors for A,
with corresponding eigenvalues λi. An operator is said to be diagonalizable if it has a
diagonal representation. In the next section we will find a simple set of necessary and

sufficient conditions for an operator on a Hilbert space to be diagonalizable. As an example

of a diagonal representation, note that the Pauli Z matrix may be written

Z =

[
1 0

0 −1
]
= |0〉〈0| − |1〉〈1|, (2.29)

where the matrix representation is with respect to orthonormal vectors |0〉 and |1〉, re-
spectively. Diagonal representations are sometimes also known as orthonormal decom-
positions.
When an eigenspace is more than one dimensional we say that it is degenerate. For

example, the matrix A defined by

A ≡
⎡
⎣ 2 0 0

0 2 0

0 0 0

⎤
⎦ (2.30)

has a two-dimensional eigenspace corresponding to the eigenvalue 2. The eigenvectors

(1, 0, 0) and (0, 1, 0) are said to be degenerate because they are linearly independent
eigenvectors of A with the same eigenvalue.

Exercise 2.11: (Eigendecomposition of the Pauli matrices) Find the

eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices

X, Y , and Z.

Exercise 2.12: Prove that the matrix [
1 0

1 1

]
(2.31)

is not diagonalizable.

2.1.6 Adjoints and Hermitian operators
Suppose A is any linear operator on a Hilbert space, V . It turns out that there exists a
unique linear operator A† on V such that for all vectors |v〉, |w〉 ∈ V ,

(|v〉, A|w〉) = (A†|v〉, |w〉). (2.32)

This linear operator is known as the adjoint or Hermitian conjugate of the operator
A. From the definition it is easy to see that (AB)† = B†A†. By convention, if |v〉 is
a vector, then we define |v〉† ≡ 〈v|. With this definition it is not difficult to see that
(A|v〉)† = 〈v|A†.
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Exercise 2.13: If |w〉 and |v〉 are any two vectors, show that (|w〉〈v|)† = |v〉〈w|.
Exercise 2.14: (Anti-linearity of the adjoint) Show that the adjoint operation is

anti-linear,

(∑
i

aiAi

)†

=
∑

i

a∗
i A

†
i . (2.33)

Exercise 2.15: Show that (A†)† = A.

In a matrix representation of an operator A, the action of the Hermitian conjugation
operation is to take the matrix of A to the conjugate-transpose matrix, A† ≡ (A∗)T ,
where the ∗ indicates complex conjugation, and T indicates the transpose operation. For
example, we have

[
1 + 3i 2i
1 + i 1− 4i

]†
=

[
1− 3i 1− i
−2i 1 + 4i

]
. (2.34)

An operator A whose adjoint is A is known as a Hermitian or self-adjoint op-
erator. An important class of Hermitian operators is the projectors. Suppose W is a

k-dimensional vector subspace of the d-dimensional vector space V . Using the Gram–
Schmidt procedure it is possible to construct an orthonormal basis |1〉, . . . , |d〉 for V
such that |1〉, . . . , |k〉 is an orthonormal basis for W . By definition,

P ≡
k∑

i=1

|i〉〈i| (2.35)

is the projector onto the subspaceW . It is easy to check that this definition is independent

of the orthonormal basis |1〉, . . . , |k〉 used forW . From the definition it can be shown that

|v〉〈v| is Hermitian for any vector |v〉, so P is Hermitian, P † = P . We will often refer
to the ‘vector space’ P , as shorthand for the vector space onto which P is a projector.

The orthogonal complement of P is the operator Q ≡ I − P . It is easy to see that Q is

a projector onto the vector space spanned by |k + 1〉, . . . , |d〉, which we also refer to as
the orthogonal complement of P , and may denote by Q.

Exercise 2.16: Show that any projector P satisfies the equation P 2 = P .

An operator A is said to be normal if AA† = A†A. Clearly, an operator which
is Hermitian is also normal. There is a remarkable representation theorem for normal

operators known as the spectral decomposition, which states that an operator is a normal
operator if and only if it is diagonalizable. This result is proved in Box 2.2 on page 72,

which you should read closely.

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real
eigenvalues.

A matrix U is said to be unitary if U †U = I. Similarly an operator U is unitary if

U †U = I. It is easily checked that an operator is unitary if and only if each of its matrix
representations is unitary. A unitary operator also satisfies UU † = I, and therefore U is

normal and has a spectral decomposition. Geometrically, unitary operators are important

because they preserve inner products between vectors. To see this, let |v〉 and |w〉 be any
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two vectors. Then the inner product of U |v〉 and U |w〉 is the same as the inner product
of |v〉 and |w〉, (

U |v〉, U |w〉) = 〈v|U †U |w〉 = 〈v|I|w〉 = 〈v|w〉. (2.36)

This result suggests the following elegant outer product representation of any unitary U .
Let |vi〉 be any orthonormal basis set. Define |wi〉 ≡ U |vi〉, so |wi〉 is also an orthonormal
basis set, since unitary operators preserve inner products. Note that U =

∑
i |wi〉〈vi|.

Conversely, if |vi〉 and |wi〉 are any two orthonormal bases, then it is easily checked that
the operator U defined by U ≡∑

i |wi〉〈vi| is a unitary operator.

Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is,
can be written in the form eiθ for some real θ.

Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli

matrices are Hermitian and unitary.

Exercise 2.20: (Basis changes) Suppose A′ and A′′ are matrix representations of an
operator A on a vector space V with respect to two different orthonormal bases,

|vi〉 and |wi〉. Then the elements of A′ and A′′ are A′
ij = 〈vi|A|vj〉 and

A′′
ij = 〈wi|A|wj〉. Characterize the relationship between A′ and A′′.

A special subclass of Hermitian operators is extremely important. This is the positive
operators. A positive operator A is defined to be an operator such that for any vector |v〉,
(|v〉, A|v〉) is a real, non-negative number. If (|v〉, A|v〉) is strictly greater than zero for
all |v〉 	= 0 then we say that A is positive definite. In Exercise 2.24 on this page you will
show that any positive operator is automatically Hermitian, and therefore by the spectral

decomposition has diagonal representation
∑

i λi|i〉〈i|, with non-negative eigenvalues λi.

Exercise 2.21: Repeat the proof of the spectral decomposition in Box 2.2 for the case
when M is Hermitian, simplifying the proof wherever possible.

Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different
eigenvalues are necessarily orthogonal.

Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1.

Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator

is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be

written A = B + iC where B and C are Hermitian.)

Exercise 2.25: Show that for any operator A, A†A is positive.

2.1.7 Tensor products
The tensor product is a way of putting vector spaces together to form larger vector spaces.
This construction is crucial to understanding the quantum mechanics of multiparticle

systems. The following discussion is a little abstract, and may be difficult to follow if

you’re not already familiar with the tensor product, so feel free to skip ahead now and

revisit later when you come to the discussion of tensor products in quantum mechanics.

Suppose V and W are vector spaces of dimension m and n respectively. For conve-
nience we also suppose that V and W are Hilbert spaces. Then V ⊗W (read ‘V tensor



72 Introduction to quantum mechanics

Box 2.2: The spectral decomposition – important!
The spectral decomposition is an extremely useful representation theorem for nor-
mal operators.

Theorem 2.1: (Spectral decomposition) Any normal operator M on a vector

space V is diagonal with respect to some orthonormal basis for V .
Conversely, any diagonalizable operator is normal.

Proof
The converse is a simple exercise, so we prove merely the forward implication,

by induction on the dimension d of V . The case d = 1 is trivial. Let λ be an
eigenvalue of M , P the projector onto the λ eigenspace, and Q the projector onto

the orthogonal complement. Then M = (P + Q)M (P + Q) = PMP + QMP +
PMQ + QMQ. Obviously PMP = λP . Furthermore, QMP = 0, as M takes

the subspace P into itself. We claim that PMQ = 0 also. To see this, let |v〉
be an element of the subspace P . Then MM †|v〉 = M †M |v〉 = λM †|v〉. Thus,
M †|v〉 has eigenvalue λ and therefore is an element of the subspace P . It follows
that QM †P = 0. Taking the adjoint of this equation gives PMQ = 0. Thus

M = PMP +QMQ. Next, we prove that QMQ is normal. To see this, note that

QM = QM (P +Q) = QMQ, and QM † = QM †(P + Q) = QM †Q. Therefore,
by the normality of M , and the observation that Q2 = Q,

QMQ QM †Q = QMQM †Q (2.37)

= QMM †Q (2.38)

= QM †MQ (2.39)

= QM †QMQ (2.40)

= QM †Q QMQ , (2.41)

so QMQ is normal. By induction, QMQ is diagonal with respect to some or-

thonormal basis for the subspace Q, and PMP is already diagonal with respect

to some orthonormal basis for P . It follows that M = PMP +QMQ is diagonal

with respect to some orthonormal basis for the total vector space.

In terms of the outer product representation, this means that M can be written as

M =
∑

i λi|i〉〈i|, where λi are the eigenvalues of M , |i〉 is an orthonormal basis
for V , and each |i〉 an eigenvector ofM with eigenvalue λi. In terms of projectors,

M =
∑

i λiPi, where λi are again the eigenvalues of M , and Pi is the projector

onto the λi eigenspace of M . These projectors satisfy the completeness relation∑
i Pi = I, and the orthonormality relation PiPj = δijPi.

W ’) is anmn dimensional vector space. The elements of V ⊗W are linear combinations

of ‘tensor products’ |v〉⊗|w〉 of elements |v〉 of V and |w〉 ofW . In particular, if |i〉 and
|j〉 are orthonormal bases for the spaces V andW then |i〉⊗|j〉 is a basis for V ⊗W . We

often use the abbreviated notations |v〉|w〉, |v, w〉 or even |vw〉 for the tensor product
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|v〉⊗ |w〉. For example, if V is a two-dimensional vector space with basis vectors |0〉 and
|1〉 then |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 is an element of V ⊗ V .

By definition the tensor product satisfies the following basic properties:

(1) For an arbitrary scalar z and elements |v〉 of V and |w〉 of W ,

z
(|v〉 ⊗ |w〉) = (

z|v〉)⊗ |w〉 = |v〉 ⊗ (
z|w〉) . (2.42)

(2) For arbitrary |v1〉 and |v2〉 in V and |w〉 in W ,

(|v1〉 + |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉 + |v2〉 ⊗ |w〉. (2.43)

(3) For arbitrary |v〉 in V and |w1〉 and |w2〉 in W ,

|v〉 ⊗ (|w1〉 + |w2〉
)
= |v〉 ⊗ |w1〉 + |v〉 ⊗ |w2〉. (2.44)

What sorts of linear operators act on the space V ⊗ W ? Suppose |v〉 and |w〉 are
vectors in V and W , and A and B are linear operators on V and W , respectively. Then

we can define a linear operator A⊗B on V ⊗W by the equation

(A⊗B)(|v〉 ⊗ |w〉) ≡ A|v〉 ⊗B|w〉. (2.45)

The definition of A ⊗ B is then extended to all elements of V ⊗W in the natural way

to ensure linearity of A⊗B, that is,

(A⊗B)

(∑
i

ai|vi〉 ⊗ |wi〉
)
≡

∑
i

aiA|vi〉 ⊗B|wi〉. (2.46)

It can be shown that A ⊗ B defined in this way is a well-defined linear operator on

V ⊗W . This notion of the tensor product of two operators extends in the obvious way

to the case where A : V → V ′ and B : W → W ′ map between different vector spaces.
Indeed, an arbitrary linear operator C mapping V ⊗W to V ′ ⊗W ′ can be represented
as a linear combination of tensor products of operators mapping V to V ′ and W to W ′,

C =
∑

i

ciAi ⊗Bi, (2.47)

where by definition

(∑
i

ciAi ⊗ Bi

)
|v〉 ⊗ |w〉 ≡

∑
i

ciAi|v〉 ⊗ Bi|w〉. (2.48)

The inner products on the spaces V and W can be used to define a natural inner

product on V ⊗W . Define

⎛
⎝∑

i

ai|vi〉 ⊗ |wi〉,
∑

j

bj |v′
j〉 ⊗ |w′

j〉
⎞
⎠ ≡∑

ij

a∗
i bj〈vi|v′

j〉〈wi|w′
j〉. (2.49)

It can be shown that the function so defined is a well-defined inner product. From this

inner product, the inner product space V ⊗W inherits the other structure we are familiar

with, such as notions of an adjoint, unitarity, normality, and Hermiticity.

All this discussion is rather abstract. It can be made much more concrete by moving
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to a convenient matrix representation known as the Kronecker product. Suppose A is

an m by n matrix, and B is a p by q matrix. Then we have the matrix representation:

nq︷ ︸︸ ︷

A⊗B ≡

⎡
⎢⎢⎢⎣

A11B A12B . . . A1nB
A21B A22B . . . A2nB
...

...
...

...

Am1B Am2B . . . AmnB

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

mp . (2.50)

In this representation terms like A11B denote p by q submatrices whose entries are
proportional to B, with overall proportionality constant A11. For example, the tensor

product of the vectors (1, 2) and (2, 3) is the vector

[
1

2

]
⊗

[
2

3

]
=

⎡
⎢⎢⎣
1× 2
1× 3
2× 2
2× 3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2

3

4

6

⎤
⎥⎥⎦ . (2.51)

The tensor product of the Pauli matrices X and Y is

X ⊗ Y =

[
0 · Y 1 · Y
1 · Y 0 · Y

]
=

⎡
⎢⎢⎣
0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

⎤
⎥⎥⎦ . (2.52)

Finally, we mention the useful notation |ψ〉⊗k, which means |ψ〉 tensored with itself k
times. For example |ψ〉⊗2 = |ψ〉 ⊗ |ψ〉. An analogous notation is also used for operators
on tensor product spaces.

Exercise 2.26: Let |ψ〉 = (|0〉 + |1〉)/√2. Write out |ψ〉⊗2 and |ψ〉⊗3 explicitly, both
in terms of tensor products like |0〉|1〉, and using the Kronecker product.

Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli
operators (a) X and Z; (b) I and X ; (c) X and I. Is the tensor product
commutative?

Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations
distribute over the tensor product,

(A⊗B)∗ = A∗ ⊗B∗; (A⊗B)T = AT ⊗BT ; (A⊗B)† = A† ⊗B†.(2.53)

Exercise 2.29: Show that the tensor product of two unitary operators is unitary.

Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian.

Exercise 2.31: Show that the tensor product of two positive operators is positive.

Exercise 2.32: Show that the tensor product of two projectors is a projector.

Exercise 2.33: The Hadamard operator on one qubit may be written as

H =
1√
2

[
(|0〉 + |1〉)〈0| + (|0〉 − |1〉)〈1|

]
. (2.54)
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Show explicitly that the Hadamard transform on n qubits, H⊗n, may be written

as

H⊗n =
1√
2n

∑
x,y

(−1)x·y|x〉〈y|. (2.55)

Write out an explicit matrix representation for H⊗2.

2.1.8 Operator functions
There are many important functions which can be defined for operators and matri-

ces. Generally speaking, given a function f from the complex numbers to the com-

plex numbers, it is possible to define a corresponding matrix function on normal ma-

trices (or some subclass, such as the Hermitian matrices) by the following construc-

tion. Let A =
∑

a a|a〉〈a| be a spectral decomposition for a normal operator A. Define
f (A) ≡∑

a f (a)|a〉〈a|. A little thought shows that f (A) is uniquely defined. This pro-
cedure can be used, for example, to define the square root of a positive operator, the

logarithm of a positive-definite operator, or the exponential of a normal operator. As an

example,

exp(θZ) =

[
eθ 0

0 e−θ

]
, (2.56)

since Z has eigenvectors |0〉 and |1〉.

Exercise 2.34: Find the square root and logarithm of the matrix
[
4 3

3 4

]
. (2.57)

Exercise 2.35: (Exponential of the Pauli matrices) Let �v be any real,
three-dimensional unit vector and θ a real number. Prove that

exp(iθ�v · �σ) = cos(θ)I + i sin(θ)�v · �σ, (2.58)

where �v ·�σ ≡∑3

i=1 viσi. This exercise is generalized in Problem 2.1 on page 117.

Another important matrix function is the trace of a matrix. The trace of A is defined

to be the sum of its diagonal elements,

tr(A) ≡
∑

i

Aii. (2.59)

The trace is easily seen to be cyclic, tr(AB) = tr(BA), and linear, tr(A + B) =
tr(A)+tr(B), tr(zA) = z tr(A), where A and B are arbitrary matrices, and z is a complex
number. Furthermore, from the cyclic property it follows that the trace of a matrix

is invariant under the unitary similarity transformation A → UAU †, as tr(UAU †) =
tr(U †UA) = tr(A). In light of this result, it makes sense to define the trace of an operator
A to be the trace of any matrix representation of A. The invariance of the trace under
unitary similarity transformations ensures that the trace of an operator is well defined.

As an example of the trace, suppose |ψ〉 is a unit vector and A is an arbitrary op-

erator. To evaluate tr(A|ψ〉〈ψ|) use the Gram–Schmidt procedure to extend |ψ〉 to an
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orthonormal basis |i〉 which includes |ψ〉 as the first element. Then we have
tr(A|ψ〉〈ψ|) =

∑
i

〈i|A|ψ〉〈ψ|i〉 (2.60)

= 〈ψ|A|ψ〉. (2.61)

This result, that tr(A|ψ〉〈ψ|) = 〈ψ|A|ψ〉 is extremely useful in evaluating the trace of an
operator.

Exercise 2.36: Show that the Pauli matrices except for I have trace zero.

Exercise 2.37: (Cyclic property of the trace) If A and B are two linear operators

show that

tr(AB) = tr(BA). (2.62)

Exercise 2.38: (Linearity of the trace) If A and B are two linear operators, show

that

tr(A +B) = tr(A) + tr(B) (2.63)

and if z is an arbitrary complex number show that

tr(zA) = ztr(A). (2.64)

Exercise 2.39: (The Hilbert–Schmidt inner product on operators) The set LV

of linear operators on a Hilbert space V is obviously a vector space – the sum of

two linear operators is a linear operator, zA is a linear operator if A is a linear

operator and z is a complex number, and there is a zero element 0. An important
additional result is that the vector space LV can be given a natural inner product

structure, turning it into a Hilbert space.

(1) Show that the function (·, ·) on LV × LV defined by

(A, B) ≡ tr(A†B) (2.65)

is an inner product function. This inner product is known as the

Hilbert–Schmidt or trace inner product.
(2) If V has d dimensions show that LV has dimension d2.

(3) Find an orthonormal basis of Hermitian matrices for the Hilbert space LV .

2.1.9 The commutator and anti-commutator
The commutator between two operators A and B is defined to be

[A, B] ≡ AB −BA. (2.66)

If [A, B] = 0, that is, AB = BA, then we say A commutes with B. Similarly, the
anti-commutator of two operators A and B is defined by

{A, B} ≡ AB +BA; (2.67)

we say A anti-commutes with B if {A, B} = 0. It turns out that many important prop-
erties of pairs of operators can be deduced from their commutator and anti-commutator.

Perhaps the most useful relation is the following connection between the commutator and

the property of being able to simultaneously diagonalize Hermitian operators A and B,
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that is, write A =
∑

i ai|i〉〈i|, B =
∑

i bi|i〉〈i|, where |i〉 is some common orthonormal
set of eigenvectors for A and B.

Theorem 2.2: (Simultaneous diagonalization theorem) Suppose A and B are

Hermitian operators. Then [A, B] = 0 if and only if there exists an orthonormal
basis such that both A and B are diagonal with respect to that basis. We say that

A and B are simultaneously diagonalizable in this case.

This result connects the commutator of two operators, which is often easy to compute,

to the property of being simultaneously diagonalizable, which is a priori rather difficult
to determine. As an example, consider that

[X, Y ] =

[
0 1

1 0

] [
0 −i
i 0

]
−

[
0 −i
i 0

] [
0 1

1 0

]
(2.68)

= 2i

[
1 0

0 −1
]

(2.69)

= 2iZ , (2.70)

so X and Y do not commute. You have already shown, in Exercise 2.11, that X and Y
do not have common eigenvectors, as we expect from the simultaneous diagonalization

theorem.

Proof
You can (and should!) easily verify that if A and B are diagonal in the same orthonormal

basis then [A, B] = 0. To show the converse, let |a, j〉 be an orthonormal basis for the
eigenspace Va of A with eigenvalue a; the index j is used to label possible degeneracies.
Note that

AB|a, j〉 = BA|a, j〉 = aB|a, j〉, (2.71)

and therefore B|a, j〉 is an element of the eigenspace Va. Let Pa denote the projector

onto the space Va and define Ba ≡ PaBPa. It is easy to see that the restriction of Ba to

the space Va is Hermitian on Va, and therefore has a spectral decomposition in terms of

an orthonormal set of eigenvectors which span the space Va. Let’s call these eigenvectors

|a, b, k〉, where the indices a and b label the eigenvalues of A and Ba, and k is an extra
index to allow for the possibility of a degenerate Ba. Note that B|a, b, k〉 is an element
of Va, so B|a, b, k〉 = PaB|a, b, k〉. Moreover we have Pa|a, b, k〉 = |a, b, k〉, so

B|a, b, k〉 = PaBPa|a, b, k〉 = b|a, b, k〉. (2.72)

It follows that |a, b, k〉 is an eigenvector of B with eigenvalue b, and therefore |a, b, k〉 is
an orthonormal set of eigenvectors of both A and B, spanning the entire vector space on
which A and B are defined. That is, A and B are simultaneously diagonalizable.

Exercise 2.40: (Commutation relations for the Pauli matrices) Verify the

commutation relations

[X, Y ] = 2iZ; [Y, Z] = 2iX ; [Z, X] = 2iY. (2.73)

There is an elegant way of writing this using εjkl, the antisymmetric tensor on
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three indices, for which εjkl = 0 except for ε123 = ε231 = ε312 = 1, and
ε321 = ε213 = ε132 = −1:

[σj , σk] = 2i
3∑

l=1

εjklσl. (2.74)

Exercise 2.41: (Anti-commutation relations for the Pauli matrices) Verify the

anti-commutation relations

{σi, σj} = 0 (2.75)

where i 	= j are both chosen from the set 1, 2, 3. Also verify that (i = 0, 1, 2, 3)

σ2i = I. (2.76)

Exercise 2.42: Verify that

AB =
[A, B] + {A, B}

2
. (2.77)

Exercise 2.43: Show that for j, k = 1, 2, 3,

σjσk = δjkI + i
3∑

l=1

εjklσl. (2.78)

Exercise 2.44: Suppose [A, B] = 0, {A, B} = 0, and A is invertible. Show that B
must be 0.

Exercise 2.45: Show that [A, B]† = [B†, A†].

Exercise 2.46: Show that [A, B] = −[B, A].

Exercise 2.47: Suppose A and B are Hermitian. Show that i[A, B] is Hermitian.

2.1.10 The polar and singular value decompositions
The polar and singular value decompositions are useful ways of breaking linear operators
up into simpler parts. In particular, these decompositions allow us to break general linear

operators up into products of unitary operators and positive operators. While we don’t

understand the structure of general linear operators terribly well, we do understand

unitary operators and positive operators in quite some detail. The polar and singular

value decompositions allow us to apply this understanding to better understand general

linear operators.

Theorem 2.3: (Polar decomposition) Let A be a linear operator on a vector space V .
Then there exists unitary U and positive operators J and K such that

A = UJ = KU, (2.79)

where the unique positive operators J and K satisfying these equations are

defined by J ≡
√

A†A and K ≡
√

AA†. Moreover, if A is invertible then U is

unique.
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We call the expression A = UJ the left polar decomposition of A, and A = KU the

right polar decomposition of A. Most often, we’ll omit the ‘right’ or ‘left’ nomenclature,
and use the term ‘polar decomposition’ for both expressions, with context indicating

which is meant.

Proof
J ≡

√
A†A is a positive operator, so it can be given a spectral decomposition, J =∑

i λi|i〉〈i| (λi ≥ 0). Define |ψi〉 ≡ A|i〉. From the definition, we see that 〈ψi|ψi〉 = λ2i .
Consider for now only those i for which λi 	= 0. For those i define |ei〉 ≡ |ψi〉/λi, so

the |ei〉 are normalized. Moreover, they are orthogonal, since if i 	= j then 〈ei|ej〉 =
〈i|A†A|j〉/λiλj = 〈i|J2|j〉/λiλj = 0.

We have been considering i such that λi 	= 0. Now use the Gram–Schmidt procedure
to extend the orthonormal set |ei〉 so it forms an orthonormal basis, which we also label
|ei〉. Define a unitary operator U ≡∑

i |ei〉〈i|. When λi 	= 0 we have UJ |i〉 = λi|ei〉 =
|ψi〉 = A|i〉. When λi = 0 we have UJ |i〉 = 0 = |ψi〉. We have proved that the action of
A and UJ agree on the basis |i〉, and thus that A = UJ .

J is unique, since multiplying A = UJ on the left by the adjoint equation A† = JU †

gives J2 = A†A, from which we see that J =
√

A†A, uniquely. A little thought shows that
if A is invertible, then so is J , so U is uniquely determined by the equation U = AJ−1.
The proof of the right polar decomposition follows, since A = UJ = UJU †U = KU ,
where K ≡ UJU † is a positive operator. Since AA† = KUU †K = K2 we must have

K =
√

AA†, as claimed.

The singular value decomposition combines the polar decomposition and the spectral

theorem.

Corollary 2.4: (Singular value decomposition) Let A be a square matrix. Then

there exist unitary matrices U and V , and a diagonal matrix D with

non-negative entries such that

A = UDV . (2.80)

The diagonal elements of D are called the singular values of A.

Proof
By the polar decomposition, A = SJ , for unitary S, and positive J . By the spectral
theorem, J = TDT †, for unitary T and diagonal D with non-negative entries. Setting

U ≡ ST and V ≡ T † completes the proof.

Exercise 2.48: What is the polar decomposition of a positive matrix P ? Of a unitary
matrix U ? Of a Hermitian matrix, H?

Exercise 2.49: Express the polar decomposition of a normal matrix in the outer
product representation.

Exercise 2.50: Find the left and right polar decompositions of the matrix
[
1 0

1 1

]
. (2.81)


